Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 327, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658826

RESUMEN

Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.


Asunto(s)
Oomicetos , Enfermedades de las Plantas , Vitis , Oomicetos/patogenicidad , Oomicetos/fisiología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Vitis/genética , Virulencia , Evolución Biológica , Interacciones Huésped-Patógeno
2.
Microorganisms ; 11(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37110279

RESUMEN

Amid climate change, heatwave events are expected to increase in frequency and severity. As a result, yield losses in viticulture due to heatwave stress have increased over the years. As one of the most important crops in the world, an eco-friendly stress mitigation strategy is greatly needed. The present work aims to evaluate the physiological fitness improvement by two marine plant growth-promoting rhizobacteria consortia in Vitis vinifera cv. Antão Vaz under heatwave conditions. To assess the potential biophysical and biochemical thermal stress feedback amelioration, photochemical traits, pigment and fatty acid profiles, and osmotic and oxidative stress biomarkers were analysed. Bioaugmented grapevines exposed to heatwave stress presented a significantly enhanced photoprotection capability and higher thermo-stability, exhibiting a significantly lower dissipation energy flux than the non-inoculated plants. Additionally, one of the rhizobacterial consortia tested improved light-harvesting capabilities by increasing reaction centre availability and preserving photosynthetic efficiency. Rhizobacteria inoculation expressed an osmoprotectant promotion, revealed by the lower osmolyte concentration while maintaining leaf turgidity. Improved antioxidant mechanisms and membrane stability resulted in lowered lipid peroxidation product formation when compared to non-inoculated plants. Although the consortia were found to differ significantly in their effectiveness, these findings demonstrate that bioaugmentation induced significant heatwave stress tolerance and mitigation. This study revealed the promising usage of marine PGPR consortia to promote plant fitness and minimize heatwave impacts in grapevines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...